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SUMMARY

This report describes the formulation and implementation of a nonreflecting boundary
for use with existing finite-element codes to perform nonlinear ground-shock analyses of
buried structures. The boundary is based on a first-order doubly asymptotic approximation
(DAA I) for disturbances propagating outward from a selected portion of the soil medium
surrounding the structure of interest. The resulting set of first-order ordinary differential
equations is then combined with the second-order equations of motion for the finite-element
model so as to facilitate solution by a staggered solution procedure. This procedure is shown
to be computationally stable as long as the time increment is smaller than a limiting
value based on the finite-element mass matrix and the DAA-boundary stiffness matrix.
Computational results produced by the boundary are compared with exact results for
linear canonical problems pertaining to infinite-cylindrical and spherical shells.
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SECTION 1

4 .~ INTRODUCTION

, . .4d

The primary objective of this effort has been the implementation of a non-reflecting bound-
ary for use with existing finite-element codes to perform nonlinear ground-shock analyses of
buried structures. This boundary is based on the first-order doubly asymptotic approxi.ma-

V tion (DAAI) for elastodynamic scattering [Geers and Yen (1981), Underwood and Geers
(1981)'. In addition, a staggered solution procedure is utilized to partition the global equa-
tions in order to achieve both computational efficiency and software modularity [Felippa
and Park (1980),.

This work extends that of Underwood and Geers (1981) for linear ground-shock problems,
wherein the DAA surface is placed on the surface of the buried structure. Here, the
DAA surface is moved some distance out from the surface of the structure, enclosing both
the structure and a portion of the surrounding soil medium, which may be treated with
nonlinear finite elements. Other extensions include formulation and implementation for

• general 2-D and 3-D problems, improved discretization of the DAA surface with higher-
order interpolation functions, and utilization of a conditionally stable staggered-solution
procedure.

-1.1 Doubly Asymptotic vs. Singly Asymptotic Approximations

It is important to differentiate between doubly asymptotic approximations. which address
quasi-static and wave-propagation effects simultaneously, and singly asymptotic approxi-
mations. which address these effects separately see, e.g., various papers in Kalinowski, ed.
(1981) and Datta. ed.. (1982), and Cohen and Jennings (1983)] For example, representa-
tion of the external medium by an elastic foundation, which may be quite satisfactory at
low frequencies. does not account, at higher frequencies, for energy dissipation through
outward propagation of scattered waves. On the other hand, representation of the exter-
nal medium by a viscous boundary. which may be quite satisfactory for wave-propagation
problems. does not provide elastic restoring forces in the static limit.

A response-averaging method originally proposed by Smith (1974) and extended by Cun-
dall. et a/. (1978) also fails in the static limit. For example. consider the response of a

rigid structure surrounded by an infinite, linear-elastic medium to an internal, quasi-static
point force. A computational model for this problem might consist of the rigid structure
surrounded by a portion of the medium enclosed by a non-reflecting boundary. If this
boundary is that of Smith. the total response of the structure is the average of two re-
sponses, one dependent on the stiffness of the bounded portion of medium enclosed by
a rigid boundary. and the other associated with the structure and boun'ded portion of 2
medium floating freely in space. Unfortunately. the latter response grows indefinitclt inI
the static limit because the freely floating system is not in static equilibriumn. InI cor ra:.
doubly asymptotic approximations approach exactness in the static limit.

JI- 6i
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1.2 Outline of Remainder of Report

Section 2 of this report derives the first-order doubly asymptotic equations of motion for
a buried structure excited by a transient incident wave. Section 3 deals with formation
of the medium stiffness matrix required for the low-frequency component of DAA1 . The
staggered-solution procedure and associated stability analysis are discussed in Section 4,
which establishes the time-increment limitation of the conditionally stable algorithm. Sec-
tion 5 describes the implementation of the formulation as computer software, and presents
numerical results for two canonical problems, viz., excitation of an infinite-cylindrical a.id

A a spherical shell by a plane dilatational wave. Section 6 concludes the report with some
observations and recommendations for future work.

'pi
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SECTION 2

GOVERNING EQUATIONS

This section presents the governing equations for the finite-element (FE) model of the struc-
ture along with a portion of the surrounding soil medium, and for the boundary-element
model (BE) of the non-reflecting DAA surface. These equations are then partitioned, and
a staggered-solution procedure is introduced to solve for transient response. Throughout
the development, the dependence of excitation and response quantities on time is implicit.

2.1 Finite-Element/Boundary-Element Model

Let x be the computational vector of displacement response in global coordinates for the
* FE model of the structure and portion of surrounding medium. The governing equations

for the finite-element model are then tsee, e.g., Zienkiewicz (1977)j

M, + D,* - Ksx = f, - f, (2.1)

where M,, D, and K, are the mass, damping and stiffness matrices, respectively, for
the FE model. fe is the computational vector of external medium forces imposed by the
DAA surface and fi is the vector of internal nonlinear forces: as usual. a dot denotes
differentiation in time. Compatibility of forces and displacements at the DAA surface may
be expressed as "Geers and Underwood (1981).

f, = -Gg
(2.2)

U = GTX

where g and u are the global force and displacement vectors. respectively, for the BE model
of the DAA surface and G is the force-transformation matrix from BE to FE coordinates.

Now the force vector g and displacement vector u may be decomposed into incident-wave
and scattered-wave components as

g =g + gs (2.3)
U U I -

where g, is the known force vector associated with a free-field incident wave and gs is
the unknown force vector associated with the wave scattered by the structure. It is worth
noting that this dual decomposition does not require constitutive linearity of the medium
to be valid, for gs and us may each be viewed as merely the difference between two vectors,
one obtaining with the structure absent and the other obtaining with the structure present. '

2.2 Doubly Asymptotic Approximation

A first-order DAA is used here to relate the scatiered-force vector ( ad the scattered-
displacement vector us Geers and Yen (1981) and Underwood aitd Geers (19,sI) This

V. -
a, a~%
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approximation -approaches exactness in both the high- and low-frequency limits, and effects
a smooth transition between. The development of DAA 1 for a linear, isotropic external
medium proceeds as follows.

At high frequencies, the geometrical vector of scattered-wave surface tractions for the DAA
surface corresponding to normal and tangential motions of that surface is given by

ts(p) = pmCmis (p) (2.4)

where p denotes a point on the surface, Pm is the mass density of the medium, and Cm is
the diagonal sound-speed matrix corresponding to ?i', which is the geometrical vector of

normal and tangential scattered-wave velocities. For the component of it' normal to the
DAA surface. the corresponding matrix component is the dilatational velocity, while for
each component of il' tangential to the DAA surface, the corresponding matrix component
is the shear velocity.

Now the local-coordinate vectors of (2.4) may be transformed into global-coordinate vectors
as

u'S(p) Q(p) us(p), t' (p) Q(p) ts(p) (2.5)

S to obtain, inasmuch as Q- Qt. where the superscripts -1 and t denote inverse and
transpose. respectively.

ts(p) = Qt(p) Pmroe Q(p) is(p) (2.6)

Hence boundary-element discretization of us as see, e.g., Zienkiewicz (1977)

us(p) = N(p)us (2.7)

where N(p) is a matrix of shape-functions and Us is a vector of displacement degrees of

freedom, and definition of the high-frequency scattered-wave force vector as

gh =]Nt(p)ts(p) dS (2.8)

yield. for high-frequency motions.

g Dm1I (2.9)

in which

D, f NW Q p,C,, Q N dS (2.10)

At low frequencies. the scattered-wave force computational vector is given hy the quasi-
static relation

51~ 4
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gs= Kmus (2.11)

where Km is a full, nonsymmetric stiffness matrix for the boundary-element mesh, whose
construction is described in the next section.

'N..

Finally, the first-order doubly asymptotic approximation DAAI is formed by the superpo-
sition of gI and gh to obtain

g = Dmus - Kmus (2.12)

Now the assumption embodied in DAA 1 of a constitutively linear medium for the scattered
wave is justified within the framework of classical plasticity theory if the material point
for every exterior location, i.e., every location in the medium outside the DAA surface.
remains within its corresponding yield surface when and after the scattered wave arrives
at the DAA surface. For incident waves with sufficiently rapid decay rates and for a DAA
surface sufficiently removed from the surface of the structure, the scattered wave causes
minor perturbations about an elastic state at each exterior location, thereby satisfying the
preceding condition. 4
The assumption of material isotropy outside the DAA surface cannot be rigorously main-
tained if the material has suffered plastic excursions in response to the incident wave.
However, it is likely that the resulting anisotropy is no more pronounced than that char-
acterizing the ambient state, which is generally uncertain in practical cases. Hence, while
an extension to material orthotropy may be theoretically possible, it may not be worth
the trouble.

2.3 Response Equations

Introduction of the first of (2.2) and (2.3) into (2.1) and of the second of (2.2) and (2.3)
into (2.12) yields the doubly asymptotic equations of motion

*M,:k - D,5c - K~x = -Gfgl - gs} - ft

(2.13)

gs =DM{G T  u  f} - KmlGTx- u } .

which may be numerically integrated in time to obtain the solution vectors x and g.- "
Because M,, D, and K, are typically large and banded. while K, is relatively small and
full. it is not computationally practical to introduce the second of these equations into the
first to eliminate gs.

"'

However. because D, is banded and multiplies the highest-derivative terms in the second
of (2.13). it is advantageous to apply the technique of augnicntatifon Park. er a]. (1977).
which here merely involves introducing the qecond of (2.13) into the first. moving the term

containing D, to the left side of the resulting set of equations. and keeping G K,,Gx on
the right. This yields the augmented doubly asymptotic equati ons of Motiorn

%.-
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MR - (D, + GDmGtl]Y- Ksx = t GDm6,i GKmui f, - GKmGtx (2.14)

which are highly amenable to staggered solution, as discussed in Section 4.

"-
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SECTION 3

MEDIUM STIFFNESS MATRIX

This section describes the construction of the boundary-element stiffness matrix that re-
lates the scattered-wave force and displacement vectors at low frequencies. The develop-
ment is based on Somigliana's identities, which derive from Betti's reciprocal work theo-
reins and Kelvin's problem of a point load in an infinite elastic medium ]see, e.g., Kupradze

,.4- (1965), Rizzo (1967), Cruse (1969), Lachat and Watson (1976)]

3.1 Elastostatic Boundary-Integral Equations

.p. The surface behavior of an elastic medium, whether occupying an exterior or interior
region, may be expressed as [Rizzo (1967), Cruse (1969)]

c(p)u(p) + -r T(p,q)u(q) drq = 1r U(p,q)t(q) drq (3.1)

where p is a point on the boundary and q is the integration variable, and where u(p) and
t(p) are d x 1 vectors (d = 2 or 3) of medium displacements and tractions in Cartesian
coordinates on the boundary at p. The elements T~j (p, q) and Uij (p, q) of the d x d matrices
T (p,q) and U(p, q) are fundamental solutions for the tractions and displacements at a
location q in the direction i due to a point load at location p in direction j. With bij as
the Kronecker symbol, each element of the matrix c is defined as

cij(p) = (3.2)

if there exists a continuous tangent at p. or. with F, as the surface of a sphere of radius e
centered at p,

"r ctj(p ) = lira "I Tj(p.q) dFq (3.3

if the tangent is not continuous. A simple met hod for the evaluation of c,, is given in
Appendix A.

Now an element of the two-dimensional displacement-kernel matrix L(p. q) for plane-strain
problems is given by

, (p, q) 8(3 4L)In(r)6, r., r, (3.4)

4 where G and i are the shear modulus and Poisson's ratio.respectively. and r - r(p.q) is
the distance between the load point p and the field point q: the derivatives are taken with

',4/ reference to the coordinates of q. With p, and q, as the coordinates of p and q. respectively.

% %*
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r- qz - pt

r (rir) 2 (3.5)

-q - pt
't'

In contrast, an element of the three-dimensional displacement-kernel matrix U(p, q) is given

by
1

U,3 (p,q) = 167 - (3 - 4v)6,j -i- r,, r,j (3.6)

Finally, an element of the traction-kernel matrix T(p, q) for both two- and three-dimensional

problems is given by

Ti4ar(1 )rq){[(I - 2v)bij + Or,, r,j jr,1 n, - (1 - 2v)(r,1 nj - r, 3 ni) } (3.7)

-1

where ,i and nj are direction-cosines for the surface normal at q. The two- and three-

dimensional forms are explicitly obtained by letting a = 1, 2 and f 2, 3, respectively.

3.2 Discretization

Numerical solution of the integral equation (3.1) requires discretization of the DAA surface.

over each boundary element of which the displacement and traction vectors are approxi-
mated. The curved isoparametric elements of finite-element theory offer both the generality

and the accuracy needed for this purpose. With this approach. the global Cartesian coor-
dinates of any point in an element are taken as related to the nodal coordinates by c.f.

(2.7)

x(p) = N(p) x (3.8)

i.e.. the same shape functions are used to approximate element. geometry. displacements

and tractions. This allows interpolated displacements and tractions along the DAA curve
in two-dimensional space to be integrated over a normalized length in c-coordinate space.

and similar quantities over the DAA surface in three-dimensional space to be integrated
over a standard 2 , 2 normalized square in c. c.-coordinate space.

On an element-by-element basis, (3.8) becomes

-.j k

N% here x'( ) is the d 1 vector of Cartesian coordinates of a point in element e. the Nk(W)

are the element shape functions, and x' is the d 1 vector of Cartesian coordinates of the
kth element node: also. t' c' in 2-D. but C' c, c. in 3-D. The elements used in this

,% 

N,
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study are the three-noded, quadratic, curved element for 2-D analysis and the eight-noded,
quadratic, serendipity element for 3-D analysis. The shape functions for the three-noded_
quadratic element are

N, -1)I
~~N2 = 2(3.10)

N3 = - 1)
'4

where q E [-1,1; the nodes are located at r -1,01. The shape functions for the eight-

noded quadratic element are_
N = 1 (1 - 1 2)( - C1 + -2)
N2 =(1 - g2)(1 -

a t-11 N3 = s(, + at (I -02)(,1 h2e i no n

' C.

xp Nu = 2(p 2N (3.11)~~~~~~N 5 = 1 + : ) 1 + ) : 2 - 1

."Nc, = 1(1 _ C2)(1 - :

c(P u(P N7 ( - WO( (- e J2_)d$
.:N8 1 (1 _ ,)(1 C2{)

where Ej F -1,1! and t2 t otal1 i, and all nodes ie at the intersections of the J a-1.0.1
and the 2 -1,0.1 lines, except at 0,0. where there is no node.

,[. 3.3 Matrix Assembly

With DAA-surface coordinates displacements and tractions approximated as

El3 (p) = N(p)x u(p) = N(p) u t(p) = N(p)t (3.12)

equaion(3.1) may be expressed at a node P as

c((P)- TPq, ,-.k(Ce)ue j(Ce)dc'

C(=I -T (P. q c-

J (Pq c' k \ (6Ce)t J' )d "

":where E is the total number of elements on the DAA surface and ,1:)is the Jacobian
'. for x - €transformation:also, dt' = dc' in 2D u n~c

for~~ x' tanfrato. D utd d'c in 3-D. Finally.,'
.- 'icoalescence of element contributions at common nodes is implicit in (3.13). The numerical '
• , echniiqjues used to evaluate the, int,,gral- in ihis vqiiuiiion art, disciissed in Appendix A.

L' Evaluation of (3p.13) at every node on the DAA surfa('e.% iehs a v, of similltaneous algebraic $,4
. equations that can be expressed in 1he forin

e %



A u B t (3.14) -

so that

t B- 1 Au (3.15)

Now the nodal force vector g corresponding to a traction distribution t on the DAA surface
is given by

-g J N t (p) t(p) dF (3.16)

Introduction of the third of (3.12) and of (3.15) into this relation then yields

g = Kmu (3.17)

where the generally non-symmetric medium stiffness matrix Km is given by

BK NtN dF B- 'A (3.18) %
.4. JrN

A symmetric form may be obtained as

km !(Km - K') (3.19)

which is identical to that derived from energy considerations lZienkiewicz. Kelly and Bett-
ess (1977)]. As indicated in Appendix B. however, the use of K, generally yields numerical

results inferior to those produced by Km.
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SECTION 4

STAGGERED SOLUTION PROCEDURE

In the interest of computational efficiency, the augmented doubly asymptotic equations
of motion given by (2.14) are solved with a staggered solution procedure. The procedure
is conditionally stable. requiring that the time increment be smaller than the shortest
medium-boundary period divided by 7r. This shortest period may be obtained by determin-

"* ing the highest natural frequency for the eigenproblem

W2 M, x = GKG'x (4.1)

In cases where the surrounding soil does not appreciably stiffen the embedded structure be-
yond its inherent level, the highest medium-boundary frequency is substantially lower than
the highest natural frequency characterizing the structure itself. thereby allowing the ana-
lyst to carry out stable calculations with a relatively large time increment. The remainder
of this section describes the staggered-solution procedure and the stability analysis that
leads to (4.1).
4.1 Solution Algorithm

To construct the staggered solution procedure for (2.14). those equations are expressed at,

mid-step as

MRn- 1 2- DT:kl1/2--KsXn- 2 : f,-1'2 - KM Xn-1/2 (4.2)

where the time step n = t/At. in which t and At are time and fixed time increment, re-
spectively, and where the total damping matrix DT, the medium-boundary stiffness matrix

KM, and the total force vector f are given by

DT = D, - GDmGt
KM = GKmG t  (4.3)

f = -Gg 1 - G Dm1fi - G Kmuj - f,

The integration algorithm utilized is the trapezoidal rule see. e.g.. Henriei (1962). for

which

. Xn -1 2 -(Xn-1"2 Xn

x.- 2 i- x (4.4)

i where 6 - At 2. Introduction of the first and then the last of these into the third yields
the standard form

• ," .. "11
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At

Now the first two of (4.4) are introduced into the left side of (4.2) and x 1 1 2 on the right

side of (4.2) is predicted as x to obtain the set of algebraic equations

El- 1 ~/2 = en - /2 - E , x P (4.6)

where

p'- El = M, - 6DT -- 621K,

E = 62]KM (4.7)
.', e,+1/2 =5f, -1/2 - M,(x, - 65c,) 6DTX,

Finally, the prediction xn + is based on the one-term extrapolation

Xp  X, (4.8)4,n-I 1/2

The preceding staggered solution procedure leads to the following computational sequence
to determine system response at time step n - 1:

(a) fn-1/2 = fn - fl,-1)/ 2 ,

'"(b) en-1/2 :b2fn+ ,'2 -- M,(x, - bSn) - DTX,.

"i(C) x =_ x,

(d) xn-n t, Eightis cXo1,dpv

generall prdc saifatr covrgne The

( e) xnI = 2xn+l,'2 - xn

Sn-1,/2 =(Xn-1i2 Xn

(9) M-1 •2_ KTXn 1/'2)

'. (h) xCn-1 :-1,' = R(n- 1'2-D X: I '

l#'o'.r , % here the total stiffiless matri'x KT =K,. - K.,,. To improve accuracy. an iterative loop <,"

.'.has been introduced at (d). wherein x11 on the right is corrected to the previoushly:
t~i , >' '  .calculatedaliyauestaosfnayitX x,,,,-: = twittW iterationsx,, = ,generally produce satisfactory convergence. The i

Park (1980) has performed a stability analysis of a generalized form of the staggered %
solution procedure just described. Tie result is that the procedure is computationally '
stable if no root of the characteristic equation II

. .' .. . . . . . .
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det z2(M, - Km) z 6 DT -6KT (4.9)

E of the matrices in (4.9) are symmetric; it is generally quite difficult when orie or Trore is not.

~Unfortunately, as discussed in Section 3, the medium stiffness matrix K , is nionsymrnetric.

which pollutes KM and KT. Fortunately, however. K, constitutes a small perturbation
i-{::of Km, which i s symmetric, hence it is appropriate to considerthcarteiicquio

M ._ 6 ]det z2 (M. - b2 D) - Z6D K " 0 (4.10)

'" where k m = G Ik ,G' and k K Ik,.
As discussed on page 255 of Bellman (1970). no root of (4.10) has a positive real part if
of the (M - 2rM), DT and I T are all non-negative definite and either (M - 6rIkM) or ik T

is positive definite. On physical grounds, DT and IT are both non-negative definite. but
generally not positive definite. However, inasmuch as M s positive definite (M -62IM)
is positive definite if is sufficiently small. The degree of smallness defines the stability

.. equirement, as discussed next.

Consider the following first eigenproblem:

Asx = A o pB0os

where =MS lm. This problem yields non-negative real eigenvalues and real eigen-

spvectors. These eigenvectors may be assembled into a modal transformation matrix that
diagonalizes Q as ti = Q and normalizes as is9 = pi the identity matrix. Hence

the introduction into (4.11) of a transformation from physical to generalized coordinates
arx = I y and subsequent premultiplication through by yield the diagonal eigenvalue

;, .. AQ =Q (4.12)

. Consider next the following second eigenproble:

QIx - AI x (4.13)

whose eigenvalues and eiQenvectors are the same as those of the first eigenproblem. Hence
, the transformation from physical to generalized coordinates and premultiplication through

aa u ti i uyhby %' yields

r. -f..

A-K, (4.14)

here M: %P M q a n ( Kkf %P: T :M A K M is. of course. identical to AQ?.

Finiald. consider the following third elgeniproblem:

",x %.x(1

ft-ft.

-_ , .' -.. whose.-eigen..va.ues.. and.eigenvec... ors.. are the.. same, as those of thefirt.igep.o.e. Hence ,-



(M, 6 62]kM) X= A x (4.15)

Transformation and premultication through as before yields

of~~ M;:; ;k;I;d 1 (.
deiie Af K =2 etKM

=M I (M) - KM (4.16)
• .-:= M II -b2A K/M?

-'. = M',I - 62AQ!

ma ,,mz,

. '-.which is stated in slightly different terms at the beginning of this section.

.: facilitates the estimation of a similar requirement for a non-symmetric one. Clearly. no rooteof (49) has a a positiverealpartif6isvanishinglysmall, as M is symmetriand positive

* definite, and DT is symmetric and non-negative definite. Also. on physical grounds. the
eigenvalues of (MS)-'KM must be real and non-negative. Finally, the eigenvalues for the
three eigenproblems above differ only slightly from their counterparts when KM is replaced

, K by KM because. as illustrated in Appendix B, Km constitutes a small perturbation of Im.
Hence. as 6 is increased from zero. all the roots of (4.9) contain negative real parts until
the stability requirement (4.17) is approached. where , now pertains to the use of Km .

S...

'p

! 14

deinte and DT is symti an no-egtv deinte Alo o hyialgoud.h

% eienvlue of M,,-'K mut berea an nonnegtiv. Fnall. te egenvlue fo th
thre eienpobles aovedifer oly ligtly romther cuntepars wen K isrepacee.b e a s .a i l s r t d i p e d x , K , c n t t t s a m l e t r a i n o



4..

SECTION 5

IMPLEMENTATION AND COMPUTATION

This section describes the techniques used to implement in software the approach delin-
eated above, and presents numerical results generated by that software. Modern software-
engineering techniques are used [Felippa (1981)!. in order to facilitate extension to large-

scale production analysis. The numerical results pertain to canonical problems involving
plane, dilatational step-waves that envelop infinite-cylindrical and spherical shells (Figure
1). These problems possess known analytical solutions.

5.1 Software Implementation

The approach described in Sections 2, 3 and 4 is embodied in an assembly of of four
software entities:

1. Structural Matrix Generator: The structural mass and stiffness matrices. M. and K.
in (2.14), are generated by the finite-element code DIAL iFerguson and Cyr (1984):
D, is neglected. The structural matrices and related data are read into a NICE global
database !Felippa (1982)].

2. Medium Matrix Generator: The medium damping and stiffness matrices. D, and
K, in (2.14), are generated by software developed as part of ti's stud, in the manner
described above: the force-transformation matrix G is constructed as a correspondence
table. These data are read into the NICE global database.

3. Incident Field Generator: The incident-wave displacement, velocity and force vectors.
u1 . fi and g, in (2.14), are also generated by software developed as part of this
study in the manner described below: as these are time-dependent vectors, they are ,%.calculated dynamically as the calculation proceeds. fi is taken as zero. %

4. Staggered Solution Procedure: The solution algorithm described in Subsection 4.1 is
implemented as a NICE procedure using a command language interpreter ,Felippa
(1983). The matrix operations embedded in the algorithm are performed with a
matrix utility processor for data in unblocked skyline format [Felippa (1978)1

The FE and BE models are constructed independently, although the element grids match
at the boundary. Geometrical symmetry is exploited in both canonical problems.

5.2 Incident-Wave Vectors

A plane. dilational step-wave characterized by a velocity jump V', and propagating in the
x 1-direction may be described in terms of a scalar potential as

% V
S (Cdft - Xl - a)- H(cdt - X1 - a) (51)

2cd

where cd is the dilatational speed in the elastic medium. H is the Heaviside operator, and
-a is the point on the x 1-axis where the wave front is located at t 0. The applica-
tion of classical continuum formulas Achenbach (1973) yields for the components of the
geometrical displacement and velocity vectors for the incident wave

% .

_.Mv.
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U= 61, V1(Cdt -X - a)H(cdt - x1 - a) (52
Cd (5.2)

i i1,Vo H(cdt X - a)

Hence the elements of the computational vectors ul and uij are given by (6.2) evaluated

at the surface nodes.

Similarly, the components of the incident-wave stress tensor and geometrical surface-

traction vector are given by lAchenbach (1 9 7 3 )j

o -6,1 3 -. (A + 2gt61 i) H(cdt - X1 - a)

t0 = C (5.3)

Itj cijnj

where A and At are the Lam6 constants and the n, are the direction-cosines for the surface

normal. Hence the computational vector g, is given by (3.16).

5.3 Infinite Cylindrical Shell

The first canonical problem is that of an infinite cylindrical shell embedded in an elastic

medium and excited by a transverse, plane. dilatational wave Garnet and Crouzet-Pascal

(1966)". The parameter ratios for this problem are E,'E, = 2.5 (Young's modulus).

h/a = 0.01 (shell thickness-to-radius), Ps,'Pr = 1.156 (mass density). v, = 0.25 and

v = 0.2 (Poisson's): these pertain to a concrete shell in slow granite. The duration of the

rectangular incident-wave pulse is cdt/a = 10. A curved. three-noded shell element is used

to model the shell. so that the FE/BE discretization employs conforming elements.

The first computational model for this problem places the DAA boundary directly on the

shell in the manner of Underwood and Geers (1981). The use of six curved quadratic ele-

ments over the half-model yields results that are virtually identical to those of Underwood

and Geers (1981). which were generated with twenty linear elements over the half-model.

Figure 2 shows DAA and exact displacement-response histories; agreement is seen to be -0

excellent.

The second computational model introduces eight-noded medium finite elements between

the shell and the DAA boundary, which is located one shell radius out from the shell surface

(Figure 3). The displacement-response histories thus produced are shown in Figure 4 as

solid lines, along with their DAA counterparts from Figure 3. which are shown as dashed

lines. It is seen that the use of medium finite elements degrades solution accuracN somewhat

by introducing spurious oscillations caused by rnging of the mesh. A third computational

model. which locates the DAA boundary three shell radii out from the shell surface. vields

results that are even more oscillatory, although peak-response values are still satisfactory.

5.4 Spherical Shell

The second canonical problem is that of a spherical shell embedded in an elastic medium

and excited by a plane dilatational wave Grafton and Fox (1965). Geers and Yen (1981)'.

16"
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The parameter ratios for this problem are the same as those for the infinite cylindrical
shell, and the duration of the rectangular incident-wave pulse is also Cdt /a = 10. An eight-
noded Ahmad shell element is ,,sed to model the shell. so that this FE/BE discretization
also employs conforming elements.

As previously, the first computational model for this problem places the DAA boundary
directly on the shell: six eight-noded quadratic elements are used over the quarter-model of
the shell (Figure 5). DAA-based displacement-response histories are compared with their
exact counterparts in Figure 6, the latter having been generated in the manner of Geers
and Yen (1981). Here too, agreement is seen to be excellent.

The second computational model introduces twenty-noded medium finite elements between
the shell and the DAA boundary, which is located one shell radius out from the shell surface
(Figure 7). The displacement-response histories thus produced are shown in Figure 8 as
solid lines, along with their DAA counterparts from Figure 6. which are shown as dashed
lines. Here too, it is seen that the use of medium finite elements degrades solution accuracy
by introducing spurious oscillations caused by ringing of the mesh.

, S S
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SECTION 6

CONCLUSION

This report has documented the formulation and implementation of a non-reflecting bound-
ary for use with existing finite-element codes to perform nonlinear ground-shock analyses
of buried structures. The boundary is based on a first-order doubly asymptotic approxi-
mation (DAA1 ) for disturbances propagating outward from a selected portion of the soil
medium surrounding the structure of interest. The resulting set of first-order ordinary
differential equations is then combined with the second-order equations of motion for the
finite-element model so as to facilitate solution by a staggered solution procedure. This
procedure is shown to be computationallv stable as long as the time increment is smaller
than a limiting value based on the finite-element mass matrix and the DAA-boundary stiff-
ness matrix. Computational results produced by the boundary are compared with exact
results for linear canonical problems pertaining to infinite-cylindrical and spherical shells.

6.1 Observations

It is appropriate here to offer some comments regarding the work described above:

1. As pointed out in the Introduction. doubly asymptotic approximations are clearly
superior to singly asymptotic approximations. the former incorporating both radiative
energy dissipation and elastic restoring forces. the latter accounting for only one or
the other.

2. While the medium damping matrix may be interpreted in terms of local dashpots
positioned on the DAA surface, the medium stiffness matrix is not so easily regarded:
attempts to simplify the fully coupled nature of Km merely degrade the validity of
the low-frequency approximation.

3. Although it is tempting to use a symmetric medium stiffness matrix in DAA compu-
tations, the resulting loss of accuracy constitutes too high a price.

4. The computational stability requirement (4.17) is a generous one when the soil is
substantially softer than the structural material: when this is not the case. however.
more efficient computations might be realized with an unconditionally stable staggered
solution procedure. which is yet to be developed.

5. The use of modern software-engineering techniques. as embodied in the NICE In-
tegrated Software System, greatly facilitates the implementation of methods for the
analysis of coupled systems.

6. The results for the linear canonical problems once again demonstrate the difficulty of
propagating a discontinuous wave front through a finite-element grid and. in contrast.
the good performance of a boundary-element grid located directly on the surface of
the structure.

6.2 Future Work

Future R&D work in this area could profitably pursue the following paths: '1
%4
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1. The usefulness of the non-reflecting DAAI boundary in nonlinear problems should be
more stringently assessed by applying it to nonlinear canonical problems; the challenge
here is to find "exact" solutions for such problems against which to compare the

approximate solutions.
2. A non-reflecting DAA boundary should be developed for a medium half-space, this

( for application in near-surface ground-shock analyses.

3. An unconditionally stable staggered solution procedure should be formulated for prob-
lems not amenable to the conditionally stable procedure.

4. A new approach should be sought for satisfactorily propagating discontinuous wave
fronts through finite-element grids. failing this, the option, in nonlinear response prob-
lems. of placing the DAA grid directly on the surface of the structure Underwood
and Geers (1980)1 should be revisited.

'19
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APPENDIX A

NUMERICAL INTEGRATION TECHNIQUES

Discretization of the DAA boundary makes it possible to approximate (3.1) by a system of
linear algebraic equations for nodal values of surface displacement and traction, i.e., (3.14).
The coefficients in these equations are obtained by integrating, by means of quadrature
formulas, products of kernel functions and shape functions over the boundary elements, as
indicated in (3.13). In this regard, it is necessary to distinguish between to fundamentally
different types of integrals that arise.

The first type of integral occurs when the node P does not belong to the element over
which the integral is being performed. This type is regular, because the integrand varies
smoothly over the surface. Simple Gaussian quadrature formulas may then be used. In
two dimensions,

j4~I M
f( d wd f(;:) (A.1)

1 =1

where the wl are weighting factors, the cl are the coordinates of the integration points and
M is the total number of integration points. Similarly, in three dimensions.

J J. f( i, 2) d jd 2 ' Wi uj1 fU ( t2m) (.4.2)

The second type of integral occurs when the node P belongs to the element over which the
integral is being performed. This type is singular. because the integrand grows without
bound at P. The techniques used to evaluate the singular integrals encountered in this
study are described below.

A.1 Singular Integrals Involving the Traction Kernel

For this singular case. there exists no quadrature formula suitable for the calculation of
the integral T,,. The coefficient of this integral for the singular node together with the c,
term form the leading diagonal subnatrix of coefficients of u in equation (3.13). These
coefficients can be expediently calculated by noting ihai a stress field corresponding to a
rigid body translation of the body is zero. In this case equation (3.14) becomes

A u : 0 (,4.3)

where u is a vector of unit rigid body displacements. The diagonal terms of A are simply
given by

a,, 1 (.4.4)
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, A.2 Singular Integrals Involving the Displacement Kernel

* In two dimensions, a quadrature rule based on the theory of 'Takahasi and Mori (1973),
* is utilized integrate the In(r) singularity contained in the Uj; kernel. Such a quadrature

rule has been successfully used for two-dimensional acoustic scattering problems iBurton
1976 . First, let the integration of this singularity in the intrinsic coordinate system be
represented by

I f( ) d (A.5)
4 1--

where f( ) may have singularities at ±1. Then the value of this integral is given by the
following quadrature formula

N.-" -o_-, f f(-.) (A.6) [~

where
2h h

erf(nh)

The values of N 4 and h 0.75 were used to construct a 9-point. one-dimensional
quadrature rule. The error in integrating 1n(c) over (0, 1) with these points is less than
6 x 10- C. The method has been shown to be capable to handle singularities of composite
or undetermined types [Burton 1976. When the singularity is at the center node of the 3
noded quadratic element, the element is subdivided such that the quadrature rule can be

* applied on either side of the node.

In three dimensions a technique given by Lachat & Watson 1976 was used to integrate
the 1 ,r singularity in Ui,. The 2 x 2 basis square in 1,'2 -space on which the non-singular
integrals are evaluated is subdivided into triangles, the singular nodes always at the vertex.
The triangles are given a new intrinsic coordinate system (?? 1.72) obtained by viewing the
triangle as a degenerated rectangle in the ('s. 2) space. The relationship between the two
sets of intrinsic coordinates is given in terms of linear shape functions defined by

4.

C(7) N_ y(1 7 )& (A.7)

where N'(?) represent the linear shape functions. These triangular subelements in the t

(ril, .72) space form a Jacobian that has 0(r) behaviour. The 0(1 r) singularity of the kernel
is removed numerically when multiplied by this Jacobian with 0(r) behaviour.
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A.3 Geometrical Symmetry

Symmetry of the DAA boundary with respect to coordinate axes is accounted for within the
software. This is implemented by reflecting each element about the symmetry axis during
the construction of the A and B matrices (equation 3.14). Care however, is required.,when.(1---I

using the rigid body methodology to caculate the diagonal terms of the traction kernel T,,.
in that the summation of the off-diagonal terms must be performed before the symmetry
transformation is applied to each component of T,3 . Also. the displacements and tractions
at the nodes on the plane of symmetry in the direction across the plane must be eliminated
because they are zero. This is done by zeroing the corresponding rows and columns and
by placing the value 1.0 on the leading diagonal.
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APPENDIX B

SYMMETRIC AND NONSYMMETRIC
MEDIUM STIFFNESS MATRICES

The accuracy of symmetric and nonsymmetric medium stiffness matrices is evaluated here
by computing the nodal forces generated by a uniform displacement field applied to a spher-
ical cavity in an infinite elastic medium. The correct nodal forces follow from the known

?. ". traction solution 'Timoshenko and Goodier 1951 and (3.16). the nodal forces produced by
the nonsymmetric stiffness matrix follow from (3.17). and the nodal forces produced by the
symmetric stiffness matrix follow from (3.17) with K, replaced by km. Figure 9 shows,

for the discretization of Figure 5. computational error in nodal-force magnitudes computed
with the symmetric and nonsymmetric matrices: Km clearly outperforms IKm. It should
be noted, that convergence of the nodal forces generated by the symmetric medium matrix
Km was obtained by successive mesh refinement.
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